%0 Journal Article %T 分数阶微分方程边值问题非平凡解的存在性<br>Existence of nontrivial solutions for boundary value problems of fractional differential equations %A 马燕 %A 张克玉< %A br> %A MA Yan %A ZHANG Ke-yu %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2014.317 %X 摘要: 运用Leray-Schauder度理论, 在相关算子第一特征值条件下, 获得分数阶微分方程边值问题 非平凡解的存在性, 其中α∈(2,3]是一实数, D0+α 是α阶Riemann-Liouville 分数阶导数。<br>Abstract: By applying the theory of Leray-Schauder degree, the existence of nontrivial solutions for the boundary value problems of fractional differential equations is considered under some conditions concerning the first eigenvalue corresponding to the relevant linear operator.Here α∈(2,3]is a real number, D0+α is the standard Riemann-Liouville fractional derivative of order α %K 非平凡解 %K Leray-Schauder度 %K 分数阶边值问题 %K < %K br> %K fractional boundary value problem %K Leray-Schauder degree %K nontrivial solution %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2014.317