%0 Journal Article %T 具有渐近非负Ricci曲率完备非紧的黎曼流形<br>Complete noncompact Riemannian manifold with asymptotically nonnegative Ricci curvature %A 陈爱云 %A 薛琼 %A 陈欢欢 %A 肖小峰< %A br> %A CHEN Ai-yun %A XUE Qiong %A CHEN Huan-huan %A XIAO Xiao-feng %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.480 %X 摘要: 研究了一类具有渐近非负Ricci曲率完备非紧的n维黎曼流形,利用推广的Excess函数和Busemann函数,证明了具有渐近非负Ricci曲率完备非紧的n维黎曼流形在kp(r)≥-C/((1+r)α)和大体积增长的条件下具有有限拓扑型,从而推广了已有的一系列结果。<br>Abstract: We study the topology of complete noncompact Riemannian manifolds with asymptotically nonnegative Ricci curvature. By using extensions of Excess function and Busemann function, it is proved that they have finite topological type under sectional curvature bounded from nonnegative below kp(r)≥- C/((1+r)α) and large volume growth, which extend a series known results %K 渐近非负Ricci曲率 %K Excess函数 %K 大体积增长 %K 有限拓扑型 %K Busemann函数 %K < %K br> %K asymptotically nonnegative Ricci curvature %K Busemann function %K finite topological type %K Excess function %K large volume growth %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.480