%0 Journal Article %T 正合零因子下模的Gorenstein同调维数<br>Gorenstein homological dimensions of modules under exact zero-divisors %A 郭寿桃 %A 王占平< %A br> %A GUO Shou-tao %A WANG Zhan-ping %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.576 %X 摘要: 设R是具有单位元的交换Noether环,x是R上的正合零因子。研究了正合零因子下模的Gorenstein同调维数,证明了若M是Gorenstein投射(内射,平坦)R-模,则M/xM是Gorenstein投射(内射,平坦)R/xR-模,得到了有关维数的结论。对Ding投射(内射)R-模可得类似的结论。<br>Abstract: Let R be a commutative Noetherian ring with identity, x be an exact zero-divisor over R. Gorenstein homological dimensions of modules under exact zero-divisors are investigated. M/xM is Gorenstein projective(injective, flat)R/xR-module if M is Gorenstein projective(injective, flat)R-module, the results of corresponding dimensions are gained. The result can also be obtained for Ding projective(injective)R- modules %K 正合零因子 %K Gorenstein投射(内射 %K 平坦)模 %K Gorenstein投射(内射 %K 平坦)维数 %K < %K br> %K Gorenstein projective(injective %K flat)modules %K Gorenstein projective(injective %K flat)dimensions %K exact zero-divisors %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.576