%0 Journal Article %T 局部量子Bernoulli噪声意义下的随机Schr?dinger方程的有限维逼近<br>Finite dimensional approximation of linear stochastic Schr?dinger equation in terms of localization of quantum Bernoulli noises %A 黄爱玲 %A 林帅< %A br> %A HUANG Ai-ling %A LIN Shuai %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2017.174 %X 摘要: 局部量子Bernoulli噪声是局部的湮灭算子和增生算子族,满足局部等时典则反交换关系。考虑局部量子Bernoulli噪声意义下的线性随机Schr?dinger方程,讨论了其解的存在唯一性,先验估计以及有限维逼近问题。<br>Abstract: Local quantum Bernoulli noise is the family of local annihilation and creation operators, which is localization of quantum Bernoulli noise and satisfies a local canonical anti-communication relation in equal time. A linear stochastic Schr?dinger equation in terms of local quantum Bernoulli noise is considered. The existence and uniqueness of a solution to the equation, its priori estimates as well as its finite dimensional approximation are discussed %K 线性随机Schr? %K 局部量子Bernoulli噪声 %K 有限维逼近 %K dinger方程 %K 先验估计 %K < %K br> %K priori estimates %K rate of convergence %K local quantum Bernoulli noise %K stochastic Schr? %K numerical solution %K dinger equation %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.174