%0 Journal Article %T 广义神经传播方程最低阶新混合元格式的高精度分析<br>High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations %A 樊明智 %A 王芬玲 %A 石东洋< %A br> %A FAN Ming-zhi %A WANG Fen-ling %A SHI Dong-yang %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2014.410 %X 摘要: 利用双线性元和Nédéle?s元,对广义神经传播方程建立了最低阶自然满足Brezzi-Babu?ka条件的新混合元逼近格式.基于该混合元的高精度分析和插值后处理算子技术,在半离散格式下分别导出了原始变量的H1模及中间变量的L2模的超逼近性质和整体超收敛结果.当f(u)=f(X)时建立了一个具有二阶精度的全离散逼近格式,分别得到了原始变量的H1模的超逼近性和中间变量的L2模的最优误差估计.<br>Abstract: A lowest order new mixed element approximate scheme with the bilinear element and Nédélec?s element for the generalized nerve conductive equations is proposed, which can satisfy Brezzi-Babu?ka condition automatically. Based on high accuracy analysis of the mixed element and interpolation post-processing technique, the superclose properties and superconvergence results of original variable in H1-norm and intermediate variable in L2-norm are deduced separately for semi-discrete scheme. At the same time, a second order fully-discrete scheme when is f(u) equal to f(X) is established and the superclose properties and the optimal order error estimates of original variable in H1-norm and intermediate variable in L2-norm are separately derived %K 半离散和全离散格式 %K 超逼近性和超收敛结果 %K 广义神经传播方程 %K 新混合元 %K < %K br> %K superclose properties and superconvergence results %K new mixed element %K the generalized nerve conductive equations %K semi-discrete and fully-discrete schemes %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2014.410