%0 Journal Article %T 带超越共振点非线性项的二阶常微分方程边值问题的可解性<br>Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points %A 王素云 %A 李永军< %A br> %A WANG Su-yun %A LI Yong-jun %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.647 %X 摘要: 考虑非线性二阶常微分方程边值问题:{u″+f(t,u)=h(t), t∈(0,1),u(0)=u(1)=0,得到了当(f(t,s))/s 在某些“较小的集合”上超出特征值区间[λk0, λk0+1] 时,该问题解的存在唯一性结果。<br>Abstract: We study the existence and uniqueness of solutions of the boundary value problem for nonlinear second-order ordinary equations:{u″+f(t,u)=h(t), t∈(0,1),u(0)=u(1)=0,under the conditions that (f(t,s))/s may exceeds the eigenvalue interval [λk0, λk0+1] in some “smaller sets”. The existence and uniqueness of solutions of this equation are obtained %K 二阶常微分方程边值问题 %K 解的存在唯一性 %K 特征值 %K 压缩映象定理 %K < %K br> %K second-order boundary value problem %K eigenvalue %K existence and uniqueness of solutions %K contraction mapping principle %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.647