%0 Journal Article %T 一种基于联合深度学习模型的情感分类方法<br>An emotional classification method based on joint deep learning model %A 杨艳 %A 徐冰 %A 杨沐昀 %A 赵晶晶< %A br> %A YANG Yan %A XU Bing %A YANG Mu-yun %A ZHAO Jing-jing %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.1.2016.PC4 %X 摘要: 针对情感分析问题中长句和短句进行情感分类时不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆模型(LSTM)与卷积神经网络(CNN)对影视评论数据进行情感极性判别,该方法采用LSTM模型对上下文进行建模,通过逐词迭代得到上下文的特征向量,采用CNN模型从词向量序列中自动发现特征,并从局部抽取特征后将局部特征整合成全局特征来提高分类效果。所提出的方法在COAE2016评测的任务2的情感极性分类任务中,其系统准确率获得最好结果。<br>Abstract: According to the analysis of emotional problems in the modeling of long and short sentences different characteristics to sentiment classification, this paper proposes a classification algorithm based on the model of joint deep learning. Fusion of long short term memory model of the method(LSTM)and convolutional neural network(CNN)on film reviews emotional polarity discrimination, in the method, LSTM model was used to model context, through the word iteration to get feature vector context, and CNN model was used to automatically discover features from the word vector sequence, and integrating local features from the local feature extraction into global features to improve the classification results. The method proposed in this paper is to obtain the best results of the system accuracy in the task of the COAE2016 evaluation task 2 %K LSTM %K 情感分类 %K CNN %K < %K br> %K sentiment classification %K CNN %K LSTM %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.1.2016.PC4