%0 Journal Article %T 基于用户隐式兴趣模型的信息推荐<br>Information recommendation based on users interest model %A 杨震 %A 司书勇 %A 李超阳< %A br> %A YANG Zhen %A SI Shu-yong %A LI Chao-yang %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.1.2015.118 %X 摘要: 信息推荐技术能够帮助用户从海量网络信息中提取有用信息,因而得到研究者的广泛关注。通过建立用户隐式特征兴趣模型,即将用户-行为矩阵分解为用户-隐式兴趣-行为矩阵,在充分挖掘用户隐式兴趣的基础上,研究并实现了基于隐式特征兴趣模型的协同过滤算法。在Movielens语料集上进行测试的结果表明,隐式特征能够更加精准地表述用户兴趣,有效提升信息推荐性能。<br>Abstract: Information recommendation technology can help users filtering out useful content from the huge amount of information on the Internet, thus attracts a wide range of researchers attention. In this paper, we proposed a collaborative recommendation algorithm based on the users interest by using latent factor model, which captured the users implicit interests by decompose the User-Behavior matrix into a product of a User-Implicit matrix and an Interest-Behavior matrix. The experimental results in the MovieLens data sets show that the implicit characteristic can reflect the users interest more precisely than explicit characteristics, as a result, improving the recommendation performance as an expectation %K 用户兴趣模型 %K 隐语义模型 %K 信息推荐 %K 个性化推荐 %K 协同过滤 %K < %K br> %K information recommendation %K users interest model %K latent factor model %K collaborative filtering %K personalized recommendation %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.1.2015.118