%0 Journal Article %T 分数次Hardy算子交换子在变指数空间的加权有界性<br>Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent %A 马小洁 %A 赵凯< %A br> %A MA Xiao-jie %A ZHAO Kai %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2017.006 %X 摘要: 利用n维分数次Hardy算子在变指数Lebesgue空间的有界性和Lipschitz函数的性质,以及不等式估计的相关结果,得到了n维分数次Hardy算子与Lipschitz函数生成的交换子在变指数Herz-Morrey空间的加权有界性。<br>Abstract: Based on the boundedness of the n-dimensional fractional Hardy operators on Lebesgue spaces, the properties of Lipschitz functions and the estimates of the classical inequalities, the boundedness of the commutators generated by n-dimensional fractional Hardy operators and Lipschitz functions on weighted Herz-Morrey spaces with variable exponent are obtained %K 交换子 %K Lipschitz函数 %K 变指数Herz-Morrey空间 %K Muckenhoupt权 %K 分数次Hardy算子 %K < %K br> %K commutator %K fractional Hardy operator %K Lipschitz function %K Herz-Morrey space with variable exponent %K Muckenhoupt weight %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.006