%0 Journal Article %T 基于果蝇―广义回归神经网络优化的WSN节点定位算法 %A 虞继敏 %A 陈 ?Z %J 南京师范大学学报(自然科学版) %D 2017 %R 10.3969/j.issn.1001-4616.2017.02.006 %X 针对无线传感器网络(WSN)基于测距的定位算法中,利用节点坐标计算方法获得的节点坐标位置存在较大误差的问题,提出一种无需进行坐标计算的果蝇―广义回归神经网络(FOA-GRNN)优化的WSN节点定位算法. 该算法利用广义回归神经网络(GRNN)较快的学习速度和较强的逼近能力建立WSN节点定位模型,通过果蝇优化算法(FOA)调整广义回归神经网络的平滑参数,降低调整平滑参数时人为因素的影响,由神经网络直接输出未知节点坐标. 仿真实验表明,通过果蝇算法优化的FOA-GRNN模型的节点定位精度比未经优化的GRNN模型的节点定位精度高. 同时,比较了FOA-GRNN模型与BP神经网络模型、虚拟节点BP网络模型(VNBP)在WSN节点定位中效果,表明FOA-GRNN模型在WSN节点定位精确性方面具有明显优势 %K 无线传感器网络 %K 节点定位 %K 广义回归神经网络 %K 果蝇优化算法 %U http://njsfdxzrb.paperonce.org/oa/darticle.aspx?type=view&id=201702006