%0 Journal Article %T 智能天线DOA估计技术研究 %A 王 %A 莉 %A 夏克文 %A 姜 %A 霞 %A 孟 %A 瑶 %J 河北工业大学学报 %D 2018 %R 10.14081/j.cnki.hgdxb.2018.03.001 %X 智能天线DOA估计技术中子空间分解类算法存在计算量大和采样数据多的缺点,为实现实时准确的 DOA估计,提出一种在局部信号空间搜索谱峰的改进MUSIC算法,与经典算法仿真对比,结果表明改进算法 运算量明显降低.此外,为克服传统算法采样数据量大且存在冗余的不足,研究基于压缩感知的DOA估计方 法,即由阵列数据通过阵列流型矩阵重构出空间稀疏信号,从而估计目标信号的DOA,实验结果表明该方法 估计效果显著,且性能优于传统算法.</br>AsakindofDOAestimationtechnologyofsmartantenna,thesubspacedecompositionalgorithmhassuch disadvantagesasthelargecomputationalamountandmoresamplingdata.Inordertoachievereal-timeandaccurate DOAestimation,theimprovedMUSICalgorithmthatsearchingspectralpeakinlocalspectrumspaceisputforward. Comparedwiththeclassicalalgorithm,thesimulationresultsshowthatthecomputationalamountoftheimprovedalgo? rithmisreducedsignificantly.Inaddition,toovercometheshortcomingsoflargeamountofsamplingdataandredundan? cyintraditionalalgorithms,weadopttheDOAestimationbasedoncompressedsensingi.e.thespacesparsesignalisre? constructedfromthearraydatabymeansofarraymanifoldmatrix,thentheDOAofthetargetsignalcanbeestimated. Thesimulationresultsshowthatthemethodhasasignificantestimationeffect,andtheperformanceisbetterthanthetra? ditionalalgorithm. %K DOA估计 %K MUSIC算法 %K ESPRIT算法 %K 压缩感知< %K /br> %K DOAEstimation %K MUSICalgorithm %K ESPRITalgorithm %K compressivesensing %U http://zrxuebao.hebut.edu.cn//oa/darticle.aspx?type=view&id=201803001