%0 Journal Article %T 基于脉搏波和小波神经网络的血压预测 %A 刘艳萍 %A 李 %A 杰 %A 金 %A 菲 %A 崔 %A 彤 %J 河北工业大学学报 %D 2018 %R 10.14081/j.cnki.hgdxb.2018.03.003 %X 为了进一步提高血压的预测精度,实现无创连续血压测量. 本文提出了一种基于脉搏波和小波神经网络 的血压预测算法,通过脉搏波采集系统采集不同人的脉搏波信号,采用椭圆低通滤波器去除高频噪声,并且 有效提取出脉搏波中关于血压的相关特征,建立BP神经网络和小波神经网络预测模型,不断优化学习速率以 及隐含层层数,从而可以准确地预测出血压值. 结果表明,建立的脉搏波采集系统可以采集到信噪比较高的人 体脉搏波信号;建立的BP神经网络和小波神经网络模型,实现了对血压的无创连续预测,并且通过对比血压 预测的误差验证了小波神经网络比BP神经网络的预测效果更佳.</br>Inordertofurtherimprovethepredictionaccuracyofbloodpressure,andachievenoninvasivecontinuous bloodpressuremeasurement,abloodpressurepredictionalgorithmbasedonpulsewaveandwaveletneuralnetworkis proposedinthispaper.Thepulsewaveacquisitionsystemisusedtocollectthepulsewavesignalofdifferentpeople,and thehighfrequencynoiseisremovedbyellipticlowpassfilter,andtherelatedcharacteristicsofbloodpressureareex? tractedinaneffectiveway.TheBPneuralnetworkandthewaveletneuralnetworkpredictionmodelareestablishedtoop? timizethelearningrateandthenumberofhiddenlayers,sothatthebloodpressurevaluecanbeaccuratelypredicted. Theresultsshowthattheestablishedpulsewaveacquisitionsystemcancollectthehumanpulsewavesignalwithhigh signal-to-noiseratio.TheBPneuralnetworkandthewaveletneuralnetworkmodelareusedtocontinuouslypredictthe bloodpressureinanon-invasivewayandcomparetheerrorofbloodpressureprediction.Itisprovedthatthewavelet neuralnetworkisbetterthanBPneuralnetwork. %K 脉搏波 %K BP神经网络 %K 小波神经网络 %K 预测模型< %K /br> %K pulsewave %K BPneuralnetwork %K waveletneuralnetwork %K predictionmodel %U http://zrxuebao.hebut.edu.cn//oa/darticle.aspx?type=view&id=201803003