%0 Journal Article %T 基于OVO分解策略的智能卷烟感官评估方法 %A 张忠良 %A 雒兴刚 %A 汤建国 %A 唐加福 %J 东北大学学报(自然科学版) %D 2018 %R 10.12068/j.issn.1005-3026.2018.01.004 %X 摘要 针对智能卷烟感官评估系统中涉及的多分类问题,采用“一对一”(one-versus-one, OVO)分解策略将复杂的多分类问题分解成多个易于处理的二分类子问题,然后针对这些子问题分别建立二值分类器,最后采用一定的聚合策略将二值分类器组合成多类分类器.此外,分别采用基于动态分类器选择和基于距离相对竞争力加权法对OVO中的冗余二值分类器进行处理,从而降低其对OVO系统的消极影响.为了验证所采用的方法在智能卷烟感官评估中的有效性,采用国内某烟草公司提供的数据集进行对比实验.实验结果表明,在智能卷烟感官评估中基于OVO分解策略的多分类方法比传统方法具有更优的分类性能.</br>Abstract:Intelligent cigarette sensory evaluation system involves multi-class classification problems. The one-versus-one (OVO) decomposition strategy was employed to divide the multi-class classification problem into several easier-to-solve binary sub-problems. Then binary classifiers were established for these sub-problems. Finally, an aggregation strategy was adopted to combine the binary classifiers to be a multi-class classifier. In addition, dynamic classifier selection for OVO strategy (DCS-OVO) and distance-based relative competence weighting for OVO strategy (DRCW-OVO) were used to reduce the negative effect of the non-competent classifiers. In order to verify the effectiveness of the employed method in intelligent cigarette sensory evaluation, the experimental comparison by using the dataset from a Chinese tobacco company was carried out. The results indicate that the OVO decomposition strategy outperforms the classical methodology in intelligent cigarette sensory evaluation. %K 多分类 %K 一对一分解 %K 聚合策略 %K 卷烟感官质量 %K 智能评估< %K /br> %K Key words: multi-class classification one-versus-one(OVO) decomposition aggregation strategy cigarette sensory quality intelligent evaluation %U http://xuebao.neu.edu.cn/natural/CN/abstract/abstract10435.shtml