%0 Journal Article %T 一类射影平坦和对偶平坦的Finsler度量 %A 何超 %A 李影 %A 宋卫东 %J 中国科学技术大学学报 %D 2017 %R 10.3969/j.issn.0253-2778.2017.06.002 %X Finsler几何是没有二次型限制的黎曼几何,Finsler几何中两个非常重要的问题是射影平坦和对偶平坦的Finsler度量.主要研究了一类含有3个参数的Finsler度量,得到了其为射影平坦和对偶平坦的充要条件.</br>Abstract:Finsler geometry is just Riemannian geometry without quadratic restriction, and the projectively flat and dually flat Finsler metrics are very important in Finsler geometry. Here a class of 3-parameter of Finsler metrics were studied, and the necessary and sufficient conditions for the Finsler metrics to be projectively flat and dually flat were obtained. %K Finsler度量 %K 球对称 %K 射影平坦 %K 对偶平坦< %K /br> %K Key words: Finsler metrics spherically symmetric projectively flat dually flat %U http://just.ustc.edu.cn/CN/abstract/abstract163.shtml