%0 Journal Article %T 一个参量化复合核Hilbert型积分不等式 %A 刘琼[] %A 黄 %A 琳[] %J 华东师范大学学报(自然科学版) %D 2016 %R 10.3969/j.issn.1000-5641.2016.01.007 %X 摘要 通过引入一些特殊函数来刻画常数因子,获得一个核为\,$\ln(1+\mathrm{e}^{-\alpha x^{\lambda_1}y^{\lambda_2}})$\,的\,Hardy-Hilbert\,型积分不等式,考虑了它的等价式, 并证明了这对等价不等式的常数因子是最佳的.</br>Abstract:By introducing some special functions to characterize the constant factor, a Hardy-Hilbert type integral inequality with the kernel $\ln(1+\mathrm{e}^{-\alpha x^{\lambda_1}y^{\lambda_2}})$ is obtained, and its equivalent form is considered. The constant factors of the equivalent inequalities are proved being the best possible. %K Hilbert %K 型积分不等式 %K 权函数 %K 最佳常数因子< %K /br> %K Key words: Hilbert-type integral inequality \quad weight function the best constant factor %U http://xblk.ecnu.edu.cn/CN/abstract/abstract25264.shtml