%0 Journal Article %T 髋关节置换前后不同步态下股骨应力分布 %A 唐刚 %A 王建革 %A 罗红霞 %J 医用生物力学 %D 2015 %R 10.3871/j.1004-7220.2015.02.143. %X 目的 探讨人工髋关节置换(total hip replacement, THR)前后慢走及上下楼梯两种不同步态下股骨的生物力学性能,为髋关节假体的优化设计和制造提供理论基础。方法 建立人工髋关节股骨的三维有限元模型,并进行有效性验证;计算慢走和上下楼梯时THR前后股骨的应力分布及应力遮挡率。结果 慢走运动时,THR前股骨应力由近端到远端逐渐递增,在股骨中下段达到最大,最大应力为90.6 MPa;THR后股骨出现应力遮挡现象,股骨的应力幅值有所下降,最大应力为82.5 MPa,股骨近端假体周围大转子附近股骨遮挡率最大,总体遮挡率为14.9%~99.0%。此外,假体颈部出现过大的应力集中现象。上下楼梯运动时,股骨应力分布的变化规律与慢走运动时大体相似,但应力遮挡效应更为明显。结论 植入假体后,上下楼梯时股骨近端出现较大应力遮挡,并且假体自身出现过大应力集中,会影响THR手术质量,建议病人在术后应尽量减少关节角变化较大的运动。</br>Objective To investigate biomechanical properties of the femur during slow walking and stair climbing before and after total hip replacement (THA), so as to provide theoretical basis for optimal design and manufacturing of the prosthetic hip. Methods The 3D finite element model of hip femur was established and validated first, and the stress distributions and stress shielding rates during slow walking and stair climbing before and after THA were calculated. Results During slow walking, the stress increased gradually from the proximal femur to the distal femur, reaching the maximum 90.6 MPa at the lower part of the femur before THA. A stress shielding phenomenon occurred on the femur after THA, but the stress amplitude decreased, with the maximum stress reaching 82.5 MPa. The maximum shielding rate appeared near the greater trochanter of the proximal femoral prosthesis and the total stress shielding rate reached 14.9%-99.0%. In addition, excessive stress concentration occurred at the prosthetic neck. Meanwhile, the stress distribution during stair climbing had a similar regular pattern as that appeared during slow waling, but with a more obvious stress shielding effect. Conclusions The greater stress shielding of the proximal femur and the excessive stress concentration on the prosthetic hip during stair climbing will both influence the THA surgery quality, so patients should minimize the movement involving large joint angle after THA. %K 髋关节置换 %K 应力遮挡 %K 应力分布 %K 步态< %K /br> %K Total %K hip %K replacement %K (THA) %K Stress %K shielding %K Stress %K distribution %K Gait %U http://www.mechanobiology.cn/yyswlx/ch/reader/view_abstract.aspx?file_no=201502008&flag=1