%0 Journal Article %T 单、双侧接骨板内固定治疗干骺端粉碎股骨远端骨折的生物力学比较 %A 邓乡怡 %A 李博 %A 沈浩 %A 王伟 %A 陆骅 %J 医用生物力学 %D 2015 %R 10.3871/j.1004-7220.2015.03.275. %X 目的 比较单、双侧接骨板治疗干骺端粉碎股骨远端骨折的生物力学稳定性。方法22根人工股骨标本建立干骺端粉碎股骨远端骨折(AO分型:C2.3)模型,随机分成2组,每组11根。单钢板组用外侧远端解剖锁定板固定,双钢板组外侧用远端解剖锁定板、内侧用直型锁定接骨板固定。每组标本中5根进行垂直加压,3根进行循环垂直加压测试,检测干骺端内侧间隙压缩位移,剩余3根进行极限加压测试,记录固定失败时的最大负荷。结果 垂直加压测试中,单钢板组平均内侧压缩位移为(2.61±0.28) mm,双钢板组为(0.46±0.08) mm。循环垂直加压测试中,单钢板组平均内侧压缩位移为(1.56±0.12) mm,双钢板组为(0.43±0.05) mm。极限加压测试中,单钢板组平均最大负荷为(5 567±338) N,双钢板组为(9 147±186) N,每组差异都有统计学意义(P<0.05)。结论 双钢板固定干骺端粉碎股骨远端骨折的内侧抗压缩能力较单钢板固定显著增强,使股骨远端内侧结构更加稳定,有助于病人早期功能康复锻炼。</br>Objective To compare the biomechanical stability of distal femoral fracture with metaphyseal comminution fixed by unilateral or bilateral locking plates. Methods Distal femoral fracture with metaphyseal comminution (AO type C2.3 fracture) models were established in 22 artificial femoral specimens, and randomly divided into single plate group (group A, n=11) and double-plate group (group B, n=11). In group A, the fractures were fixed by lateral anatomic locking plates, and in group B, the fractures were fixed by lateral anatomical locking plates at lateral side and straight locking plates medially, respectively. In each group, 5 specimens were applied with axial compression and 3 specimens were applied with cyclic axial loading to measure medial subsidence, and the remaining 3 specimens were applied with failure loading to record the maximum load to failure. Results For axial compression, the mean medial subsidence of group A and group B were (2.61±0.28) mm and (0.46±0.08) mm, respectively. For cyclic axial loading, the mean medial subsidence of group A and group B were (1.56±0.12) mm and (0.43±0.05) mm, respectively. For failure loading, the maximum loads to failure of group A and group B were (5 567±338) N and (9 147±186) N, respectively, which all showed significant differences in two groups (P<0.05). Conclusions For fixing distal femoral fracture with metaphyseal comminution, bilateral locking plates show stronger resistance to medial compression than unilateral locking plates and thus increase the stability of medial column of distal femur, which contributes to patient rehabilitation at early stage. %K 股骨远端骨折 %K 干骺端粉碎 %K 锁定接骨板 %K 生物力学< %K /br> %K Distal %K femoral %K fracture %K Comminuted %K metaphysis %K Locking %K plate %K Biomechanics %U http://www.mechanobiology.cn/yyswlx/ch/reader/view_abstract.aspx?file_no=201503014&flag=1