%0 Journal Article %T 超高温传感器用感温材料与结构特性分析 %A 王超杰 %A 王梦楠 %A 阎涛 %A 袁广民 %J 材料科学与工业 %D 2016 %R 10.11951/j.issn.1005-0299.20160511 %X 针对现有蓝宝石光纤温度传感器测温上限难以突破1 700 ℃的瓶颈问题,本文分别从传感器测温结构和感温材料两方面进行了分析改进,以满足对2 000~2 500 ℃超高温的测量需求.提出了一种接触-非接触相结合的新型传感器测温结构,并结合非接触式测温结构特点给出了Plank黑体辐射温度误差补偿公式,解决了非接触结构的准确测温问题.结合不同感温材料特性分别对难熔金属、陶瓷基复合材料和C/C复合材料的高温性能进行分析比较,包括材料强度、密度、抗氧化性、塑性、熔点等,筛选出适合作为超高温传感器的备选感温材料.针对筛选出的感温材料设计了抗热震性试验和抗氧化烧蚀试验,实验结果表明HfB2-SiC复合材料能够满足超高温环境下对感温材料物理特性的特殊需求.传感器温度试验结果表明,采用接触-非接触式新结构和HfB2-SiC感温材料的新型光纤温度传感器可对2 500 ℃高温进行长时间稳定测量,测量精度达到±1%.</br>In order to overcome the measurable temperature limitation, about 1 700 ℃, of existing sapphire fiber temperature sensors, the improvements in the temperature-sensitive material and structure for the sensors are presented to obtain the measurement of ultrahigh temperature range of 2 000~2 500 ℃. On one hand, a new sensor design with a contact-noncontact structure is proposed. According to the blackbody radiation based temperature measuring theory, an error compensation for Plank formula is established to accurately measure the temperature of the noncontact structure. On the other hand, material properties including strength, density, oxidation resistance, plasticity, melting point, etc and ultrahigh temperature heat responses of the refractory metal are analyzed. The thermal shock resistance test and oxidation resistance test results demonstrate that HfB2-SiC can fully meet the requirement of ultrahigh temperature measurement. Finally, the new sensor can perform longtime steady measurement at the temperature of 2 500 ℃ with the precision of±1%. %K 光纤温度传感器 %K 超高温 %K 接触-非接触 %K 测温结构 %K 感温材料 %K 陶瓷基复合材料< %K /br> %K fiber %K temperature %K sensors %K ultrahigh %K temperature %K temperature %K measurement %K structure %K temperature %K sensitive %K material %K ceramic %K matrix %K composite %U http://hit.alljournals.cn/mst_cn/ch/reader/view_abstract.aspx?file_no=20160511&flag=1