%0 Journal Article %T Dimeric Dipeptide Mimetics of NGF and BDNF Are Promising Agents for Post-Stroke Therapy %A Polina Povarnina %A Tatyana A. Gudasheva %A Sergey B. Seredenin %J Journal of Biomedical Science and Engineering %P 100-107 %@ 1937-688X %D 2018 %I Scientific Research Publishing %R 10.4236/jbise.2018.115009 %X The dimeric dipeptide mimetics of the brain derived neurotrophic factor (BDNF) loops 1 and 4 and nerve growth factor (NGF) loop 4 were designed and synthesized at the Zakusov Research Institute of Pharmacology. There are respectively bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediami
de(GSB-214), bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide (GSB-106) and bis-(N-monosuccinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2). All of the ob-tained compounds activated a corresponding specific NGF or BDNF tyrosine kinase receptor (TrkA or TrkB), but had different postreceptor signaling patterns. GSB-106 activated the ERK and AKT, whereas GSB-214 and GK-2 only activated the AKT kinase. Here we report a comparative analysis of neuroprotective activity of these dipeptides in a model of ischemic stroke induced by transient middle cerebral artery occlusion (MCAO). The all three dimeric dipeptides showed a statistically significant decrease of infarct volumes with the treatment beginning 4 hour after surgery. In the experiment with BDNF mimetics, GSB-106 reduced this volume by 66% and GSB-214 by 26%. NGF GK-2 reduced the cerebral infarct volume by 45%. Thus, BDNF mimetic, which activated both the ERK and AKT, and NGF mimetic, which selectively activated PI3K/AKT, showed high neuroprotective efficacy. In addition, we studied neuroprotective effects of GK-2 at the beginning of the treatment 6, 8 and 24 hours after reperfusion. The neuroprotective effect of GK-2 persisted in all these conditions. The effectiveness of GK-2 at a delayed start of administration suggests that the dipeptide has neuroregenerative properties. The results obtained suggest a potential role for the dimeric dipeptide NGF and BDNF mimetics as therapeutic agents useful in the treatment of a stroke. %K NGF %K BDNF %K Dimeric Dipeptide Mimetics %K Stroke %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=84974