%0 Journal Article %T Biofield Energy Treatment: A Potential Strategy for Modulating Physical, Thermal and Spectral Properties of 3-Chloro-4-fluoroaniline %A Mahendra Kumar Trivedi %A Alice Branton %A Dahryn Trivedi %A Gopal Nayak %A Rama Mohan Tallapragada %A Rakesh Kumar Mishra and Snehasis Jana %J Thermodynamics & Catalysis %D 2015 %R 10.4172/2157-7544.1000151 %X 3-Chloro-4-fluoroaniline (CFA) is used as an intermediate for the synthesis of pharmaceutical compounds. The objective of this study was to investigate the influence of biofield energy treatment on the physical, thermal and spectral properties of CFA. The study was performed in two groups (control and treated). The control group remained as untreated, and the treated group received Mr. TrivediˇŻs biofield energy treatment. The control and treated CFA samples were further characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD analysis of treated CFA showed significant changes in the intensity of peaks as compared to the control. However, the average crystallite size (G) was significantly decreased by 22.08% in the treated CFA with respect to the control. The DSC analysis showed slight decrease in the melting temperature of treated CFA (47.56ˇăC) as compared to the control (48.05ˇăC). However, the latent heat of fusion in the treated sample was considerably changed by 4.28% with respect to the control. TGA analysis showed increase in maximum thermal decomposition temperature (Tmax) of the treated sample (163.34ˇăC) as compared to the control sample (159.97ˇăC). Moreover the onset temperature of treated CFA (148 ˇăC) was also increased as compared to the control sample (140ˇăC). Additionally, the weight loss of the treated sample was reduced (42.22%) with respect to the control (56.04%) that may be associated with increase in thermal stability. The FT-IR spectroscopic evaluation showed emergence of one new peak at 3639 cm-1Łżand alteration of the N-H (stretching and bending) peak in the treated sample as compared to the control. Overall, the result demonstrated that Mr. TrivediˇŻs biofield energy treatment has paramount influence on the physical, thermal and spectral properties of CFA. %K 3-Chloro-4-Fluoroaniline %K Biofield energy treatment %K Thermal analysis %K X-ray diffraction %K Fourier transform infrared analysis %K Ultra violet-visible spectroscopy %U www.omicsonline.org/open-access/biofield-energy-treatment-a-potential-strategy-for-modulating-physicalthermal-and-spectral-properties-of-3chloro4fluoroaniline-2157-7544-1000151.pdf