%0 Journal Article %T Reengineering Aircraft Structural Life Prediction Using a Digital Twin %A Eric J. Tuegel %A Anthony R. Ingraffea %A Thomas G. Eason %A S. Michael Spottswood %J International Journal of Aerospace Engineering %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/154798 %X Reengineering of the aircraft structural life prediction process to fully exploit advances in very high performance digital computing is proposed. The proposed process utilizes an ultrahigh fidelity model of individual aircraft by tail number, a Digital Twin, to integrate computation of structural deflections and temperatures in response to flight conditions, with resulting local damage and material state evolution. A conceptual model of how the Digital Twin can be used for predicting the life of aircraft structure and assuring its structural integrity is presented. The technical challenges to developing and deploying a Digital Twin are discussed in detail. 1. Introduction Despite increasing capability to understand relevant physical phenomena and to automate numerical modeling of them, the process for lifing aircraft structure as outlined in Figure 1 has not advanced greatly in fifty years. The external loads on an aircraft (aerodynamic pressures and ground loads) are developed by the loads group using a specialized model and placed in a database. The loads for selected design points are pulled from the database by the structural modeling group who then apply them to the structural finite element model (FEM) to develop the internal loads in the airframe for each design load case. These cases are placed in a second database. The durability and damage tolerance experts use these internal load cases to develop stress transfer functions relating the external loads to local stresses at details such as fastener holes, cutouts, and fillets. The stress transfer functions are applied to the loads in the flight loads database to develop a stress spectrum at each point of interest in the airframe. These stress spectra are used in specialized fatigue software together with an idealized local geometry to predict the fatigue crack nucleation or fatigue crack growth lives of details that have been identified as fatigue sensitive. Meanwhile, the dynamics group uses yet another specialized model to determine the vibration characteristics of the aircraft to address the fatigue of the structure due to low-amplitude, high-frequency dynamic loads such as acoustic and aeroelastic. Figure 1: Schematic of current life prediction process. Increased computational horsepower has enabled each of the individual parts of this process to be performed more efficiently, and so more load cases and fatigue locations can be analyzed. The output files from one model are more readily translated into input files for the next step of the process. However, there has been little effort made to %U http://www.hindawi.com/journals/ijae/2011/154798/