%0 Journal Article %T 梯度法求解黎曼流行上的多指标最优化
A Gradient Method to Solve Multicriteria Optimization on Riemannian Manifolds %A 唐凤梅 %J Pure Mathematics %P 10-16 %@ 2160-7605 %D 2016 %I Hans Publishing %R 10.12677/PM.2016.61002 %X

在这篇文章中,我们提出了黎曼流形上的一种新的梯度法,来解决多指标最优化问题。当目标函数是拟凸时,由梯度法产生的迭代序列收敛到临界的Pareto点,若目标函数是伪凸的,则由新的梯度算法产生的迭代序列收敛到最优的Pareto点。

In this paper, we present a new gradient method in the Riemannian context to solve multicriteria optimization. If the objective function is quasiconvex, the sequence generated by this method converges to a critical Pareto point. If the objective function is pseudo-convex, then the sequence will converge to optimal Pareto point.

%K 多指标最优化,伪凸,拟凸,Pareto最优,黎曼流形 %K Multicriteria Optimization %K Pseudo-Convexity %K Quasiconvexity %K Pareto Optimality %K Riemannian Manifolds %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=16791