%0 Journal Article %T 基于核的pp主成分分析及其在离群聚类中的应用 %J 计算机科学 %D 2007 %X 为了提高高维数据集合离群数据挖掘效率,在分析了传统的离群数据挖掘算法优点和缺点的基础上,提出了一种离群聚类算法,该算法将核方法与pp主成分变换结合于离群聚类算法中,采用基于核的pp主成分变换进行数据维数消减。通过该数据变换矩阵得到相应的非线性向量,并为每个向量分配一个动态权值,在优化经典的fcm模糊聚类的目标优化迭代函数基础上,最终得到各个数据的权值,根据权值的大小标识出数据集中的离群点,理论上证明了该算法的收敛性,仿真实验的结果表明了该方法能够有效地发现高维数据集中的离群点。 %K 核方法投影寻踪主成分模糊聚类离群数据 %U http://www.jsjkx.com/jsjkx/ch/reader/view_abstract.aspx?file_no=25578495&flag=1