%0 Journal Article %T 基于聚类分析和集成改进支持向量机的序列目标分类算法 %J 计算机科学 %D 2009 %X 针对现有集成支持向量机存在的训练子集随机性强、规模大、算法时空复杂度高等问题,提出了基于聚类分析的集成改进支持向量机算法。该方法首先采用基于对手惩罚策略的竞争学习算法(rpcl)对训练样本进行聚类分析,然后根据其聚类分布选择少量具有代表性的样本,并采用了基于种群收敛速度的自适应扰动的粒子群方法来训练单个支持向量机,最后通过相对多数投票方法得到集成支持向量机。实验表明相对于基于bagging,adaboost等方法而言,该方法在序列目标分类中对分类精度有较大提高,该方法构造的集成改进支持向量机具有较高的分类 %K 粒子群算法支持向量机聚类分析对手竞争惩罚学习算法集成 %U http://www.jsjkx.com/jsjkx/ch/reader/view_abstract.aspx?file_no=29209306&flag=1