%0 Journal Article %T 动态自适应的混合智能协同推荐算法 %A 陈小玉 %J 计算机应用 %D 2014 %X ?针对当前协同过滤推荐算法存在数据稀疏、用户兴趣变化和时效性不明显、推荐质量差等问题,提出了一种动态自适应的混合智能协同过滤推荐算法。首先利用修正核模糊聚类算法进行聚类分析,得到目标用户初始邻居集,缩小计算范围;重新定义了初始等价关系和等价关系相似性,提出了动态x近邻算法,得到准确邻居集并用预测评分填充矩阵,优化数据质量;最后引入用户兴趣变化因子和评价时效,挖掘用户潜在的兴趣变化,得到较好的推荐结果。实验结果表明,该算法能够得到更准确的最近邻居集,提高预测准确率和推荐质量,为用户提供更好的个性化推荐。 %U http://www.joca.cn/CN/abstract/abstract17688.shtml