%0 Journal Article %T 基于双标签集的标签匹配集成学习算法 %A 张丹普 %A 王莉莉 %A 付忠良 %A 李昕 %J 计算机应用 %D 2014 %X ?当标识示例的两个标签分别来源于两个标签集时,这种多标签分类问题称之为标签匹配问题,目前还没有针对标签匹配问题的学习算法。尽管可以用传统的多标签分类学习算法来解决标签匹配问题,但显然标签匹配问题有其自身特殊性。通过对标签匹配问题进行深入的研究,在连续adaboost(realadaptiveboosting)算法的基础上,基于整体优化的思想,采用算法适应的方法,提出了基于双标签集的标签匹配集成学习算法,该算法能够较好地学习到标签匹配规律从而完成标签匹配。实验结果表明,与传统的多标签学习算法用于解决标签匹配问题相比,提出的新算法不仅缩小了搜索的标签空间的范围,而且最小化学习误差可以随着分类器个数的增加而降低,进而使得标签匹配分类更加快速、准确。 %U http://www.joca.cn/CN/abstract/abstract17492.shtml