%0 Journal Article %T 集成社会化标签和用户背景信息的协同过滤推荐方法 %A 蒋胜 %A 王忠群 %A 修宇 %A 皇苏斌 %J 计算机应用 %D 2014 %X ?针对传统的协同推荐算法存在数据稀疏和推荐精度低的问题,提出了一种集成社会化标签和用户背景信息的协同过滤(cf)推荐方法。首先,分别计算基于社会化标签和用户背景信息的用户间的相似度;然后,基于用户评分计算用户间的相似度;最后,集成上述3种相似性度量产生用户间综合相似度,并对目标用户进行项目推荐。实验结果表明,与传统的协同过滤推荐算法相比,所提方法在正常数据集和冷启动数据集下的平均绝对误差(mae)平均降低了16%和22.6%。该方法不仅能有效地提高推荐算法的精度,而且能较好地解决数据稀疏和冷启动的问题。 %U http://www.joca.cn/CN/abstract/abstract17439.shtml