%0 Journal Article %T Diversified Carbohydrate-Binding Lectins from Marine Resources %A Tomohisa Ogawa %A Mizuki Watanabe %A Takako Naganuma %A Koji Muramoto %J Journal of Amino Acids %D 2011 %I Hindawi Publishing Corporation %R 10.4061/2011/838914 %X Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families. 1. Introduction Marine bioresources such as marine cyanobacteria, algae, invertebrate animals, and fishes produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. To date, many researchers focused on the marine natural products and their various pharmacological functions to develop new potent drugs including antimicrobials, anti-human immunodeficiency virus (HIV), anticancer, and Alzheimer¡¯s therapeutics. There are several excellent reviews that described the potent therapeutic agents derived from marine resources and their medicinal applications [1¨C3]. In the drug discovery from natural resources, lectins are one of the promising candidates for useful therapeutic agents because carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids have been implicated in certain cell types and their physiological and pathological functions including host-pathogen interactions and cell-cell communications. For example, griffithsin (GRFT), a lectin isolated from red algae Griffithsia sp., showed a strong anti-HIV activity with half maximal effective concentration (EC50) of 0.043¨C0.63£¿¦ÌM via specific binding to gp120, which is envelop glycoprotein anchored to the HIV membrane and involved in viral entry into cells by recognition of CD4 [4]. Cyanovirin (CN-V) isolated from Nostoc ellipsosporum cyanobacteria has been reported as potent lectin with anti-HIV activity [5]. Lectins are group of sugar-binding proteins except for antibodies and enzymes that recognize specific carbohydrate structures, resulting in the %U http://www.hindawi.com/journals/jaa/2011/838914/