%0 Journal Article %T bpneuralnetworkbasedonlinepredictionofsteamturbineexhaustdryness %A xiedanmei %A chenchang %A xiongyangheng %A gaoshang %A wangchun %J ÈÈÁ¦·¢µç %P 43-47 %D 2014 %X inlargescalecondensingturbineunit,theexhauststatusalwaysliesinwetsteamarea.duetothelackofeffectivemeasuringmethod,theexhaustdrynessofthesteamturbineisdifficulttoobtaindirectly,whichhasbeenthedifficultprobleminonlineeconomicanalysisforthermalpowerunits.bytakingann1000-25/600/600ultra-supercriticalsteamturbineasanexample,thenonlinearmappingabilityofbpneuralnetworkwasusedtoestablishamodelwhichcanreflecttherelationshipbetweenexhaustdrynessandunitloadandexhaustpressure.afterlearningandtrainingundersometypicalconditions,thismodelwasusedforexhaustdrynessonlinecalculationunderfullcondition.theresultsshowthefinalerrorofthetrainingsamplesandverifyingsampleswerecontrolledwithin-0.0061and-0.0010,whichsatisfiestheaccuracyrequirementforengineeringcalculation,indicatingtheestablishedbpneuralnetworkcanbeusedinexhaustdrynessprediction. %K exhaustdryness %K bpneuralnetwork %K onlineprediction %U http://rlfd.paperopen.com//oa/darticle.aspx?type=view&id=201409009