%0 Journal Article %T doublehiddenlayerrbfprocessneuralnetworkbasedonlinepredictionofsteamturbineexhaustenthalpy %A gonghuanchun %J ÈÈÁ¦·¢µç %P 36-40 %D 2014 %X inordertodiagnosetheuniteconomicperformanceonline,theradialbasisfunction(rbf)processneuralnetworkwithtwohiddenlayerswasintroducedtoonlinepredictionofsteamturbineexhaustenthalpy.thus,themodelreflectingcomplicatedrelationshipbetweenthesteamturbineexhaustenthalpyandtherelativeoperationparameterswasestablished.moreover,theenthalpyoffinalstageextractionsteamandexhaustfroma300mwunitturbinewastakenastheexampletoperformtheonlinecalculation.theresultsshowthat,theaveragerelativeerrorofthismethodislessthan1%,sotheaccuracyofthisalgorithmishigherthanthatofthebpneutralnetwork.furthermore,thismethodhasadvantagesofhighconvergencerate,simplestructureandhighaccuracy. %K steamturbine %K exhaustenthalpy %K rbfprocessneuralnetworkwithtwohiddenlayers %K onlineforecasting %U http://rlfd.paperopen.com//oa/darticle.aspx?type=view&id=201407007