%0 Journal Article %T fruitflyoptimizationalgorithmbasedhighefficiencyandlownoxcombustionmodelingforaboiler %A zhangzhenxing %A sunbaomin %A xinjing %J ÈÈÁ¦·¢µç %P 25-30 %D 2014 %X inordertocontrolnoxemissionsandenhanceboilerefficiencyincoal£¿firedboilers,thethermaloperatingdatafromanultra£¿supercritical1000mwunitboilerwereanalyzed.onthebasisofthesupportvectorregressionmachine(svm),thefruitflyoptimizationalgorithm(foa)wasappliedtooptimizethepenaltyparameterc,kernelparametergandinsensitivelosscoefficientofthemodel.then,thefoa£¿svmmodelwasestablishedtopredictthenoxemissionsandboilerefficiency,andtheperformanceofthismodelwascomparedwiththatofthega£¿svmmodeloptimizedbygeneticalgorithm(ga).theresultsshowthefoa£¿svmmodelhasbetterpredictionaccuracyandgeneralizationcapability,ofwhichthemaximumaveragerelativeerroroftestingsetliesinthenoxemissionsmodel,whichisonly3.59%.theabovemodelscanpredictthenoxemissionsandboilerefficiencyaccurately,sotheyareverysuitableforon£¿linemodelingprediction,whichprovidesagoodmodelfoundationforfurtheroptimizationoperationoflargecapacityboilers. %K ultra£¿supercritical %K 1000mwunit %K boiler %K efficiency %K noxemissions %K supportvectormachine %K fruitflyoptimizationalgorithm %U http://rlfd.paperopen.com//oa/darticle.aspx?type=view&id=201412005