%0 Journal Article %T 文献推荐系统:提高信息检索效率之途 %A 刘婧婧 %A 张向民 %J 图书情报工作 %D 2007 %X ?traditionalinformationretrieval(ir)systemshavelimitationsinimprovingsearchperformanceintoday’sinformationenvironment.thehighrecallandpoorprecisionoftraditionalirsystemsareonlyasgoodaswiththeaccuracyofsearchquery,whichis,however,usuallydifficultfortheusertoconstruct.itisalsotime-consumingfortheusertoevaluateeachsearchresult.therecommendationtechniqueshavingbeendevelopedsincetheearly1990shelpsolvetheproblemsthattraditionalirsystemshave.thispaperexplainsthebasicprocessandmajorelementsofdocumentrecommendersystems,especiallythetworecommendationtechniquesofcontent-basedfilteringandcollaborativefiltering.alsodiscussedaretheevaluationissueandtheproblemsthatcurrentdocumentrecommendersystemsarefacing,whichneedtobetakenintoaccountinfuturesystemdesigns.traditionalinformationretrieval(ir)systemshavelimitationsinimprovingsearchperformanceintoday’sinformationenvironment.thehighrecallandpoorprecisionoftraditionalirsystemsareonlyasgoodaswiththeaccuracyofsearchquery,whichis,however,usuallydifficultfortheusertoconstruct.itisalsotime-consumingfortheusertoevaluateeachsearchresult.therecommendationtechniqueshavingbeendevelopedsincetheearly1990shelpsolvetheproblemsthattraditionalirsystemshave.thispaperexplainsthebasicprocessandmajorelementsofdocumentrecommendersystems,especiallythetworecommendationtechniquesofcontent-basedfilteringandcollaborativefiltering.alsodiscussedaretheevaluationissueandtheproblemsthatcurrentdocumentrecommendersystemsarefacing,whichneedtobetakenintoaccountinfuturesystemdesigns. %U http://124.16.154.130:8080/lis/CN/abstract/abstract8591.shtml