%0 Journal Article %T lp范数约束的多核半监督支持向量机学习方法 %A 胡庆辉? %A 丁立新? %A 何进荣? %J 软件学报 %P 2522-2534 %D 2013 %R 10.3724/SP.J.1001.2013.04483 %X 在机器学习领域,核方法是解决非线性模式识别问题的一种有效手段.目前,用多核学习方法代替传统的单核学习已经成为一个新的研究热点,它在处理异构、不规则和分布不平坦的样本数据情况下,表现出了更好的灵活性、可解释性以及更优异的泛化性能.结合有监督学习中的多核学习方法,提出了基于lp范数约束的多核半监督支持向量机(semi-supervisedsupportvectormachine,简称s3vm)的优化模型.该模型的待优化参数包括高维空间的决策函数fm和核组合权系数θm.同时,该模型继承了单核半监督支持向量机的非凸非平滑特性.采用双层优化过程来优化这两组参数,并采用改进的拟牛顿法和基于成对标签交换的局部搜索算法分别解决模型关于fm的非平滑及非凸问题,以得到模型近似最优解.在多核框架中同时加入基本核和流形核,以充分利用数据的几何性质.实验结果验证了算法的有效性及较好的泛化性能. %K 半监督 %K 支持向量机 %K 拟牛顿法 %K 多核学习 %K 半监督支持向量机 %U http://www.jos.org.cn/ch/reader/view_abstract.aspx?file_no=4483&flag=1