%0 Journal Article %T 单隐层神经网络的lp同时逼近 %A 曹飞龙? %A 李有梅? %A 徐宗本? %J 软件学报 %P 1869-1874 %D 2003 %X 用构造性的方法证明对任何定义在多维欧氏空间紧集上的勒贝格可积函数以及它的导数可以用一个单隐层的神经网络同时逼近.这个方法自然地得到了网络的隐层设计和收敛速度的估计,所得到的结果描述了网络收敛速度与隐层神经元个数之间的关系,同时也推广了已有的关于一致度量下的稠密性结果. %K 神经网络 %K 同时逼近 %K 隐层设计 %K 收敛速度 %K 勒贝格尺度 %U http://www.jos.org.cn/ch/reader/view_abstract.aspx?file_no=20031108&flag=1