%0 Journal Article %T AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia %A B. Klop %A T. M. van den Berg %A A. P. Rietveld %A J. Chaves %A J. T. Real %A J. F. Ascaso %A R. Carmena %A J. W. F. Elte %A Manuel Castro Cabezas %J International Journal of Vascular Medicine %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/271030 %X Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG) metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R) gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele ( £żmM*h/L) compared to homozygous carriers of the 1166-A allele ( £żmM*h/L) ( ). Postprandial lipemia was similar for the different C573T polymorphisms. Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism. 1. Introduction Hypertriglyceridemia is an independent risk factor for the development of cardiovascular disease (CAD) [1, 2]. Recent prospective studies have shown that nonfasting TG levels are also associated with an increased risk in cardiovascular disease [3] and are possibly an even stronger predictor for CAD than fasting TG considering that humans are mostly in the nonfasting state [4, 5]. There is increasing interest to identify genes involved in the regulation of postprandial lipemia. The classical genes influencing TG metabolism like lipoprotein lipase or the APOE receptor are well known, but several others have been identified recently [6¨C8]. The large individual variability of TG levels cannot be fully explained by effects of these genes only. Most likely, environmental and dietary effects are the most important determinants of TG levels. However, unexpected effects by non-lipid-related genes have also been described. The renin angiotensin system mutational polymorphisms has been related to the metabolic syndrome and consequently to hypertriglyceridemia [9]. In the last decade, the beneficial effect of blockade of the renin-angiotensin system have been demonstrated in a wide variety of cardiovascular diseases, from heart failure to stable coronary artery disease and diabetic as well as nondiabetic chronic nephropathies [10, 11]. Therefore, the aim of the present study was to explore possible relationships between the angiotensin II type 1 receptor (AT1R) polymorphisms, A1166C and C573T, and fasting and postprandial triglyceridemia. 2. Material and Methods 2.1. Subjects This paper is part of an ongoing study aimed at %U http://www.hindawi.com/journals/ijvm/2012/271030/