%0 Journal Article %T Ontogenetic Survey of Histone Modifications in an Annelid %A Glenys Gibson %A Corban Hart %A Robyn Pierce %A Vett Lloyd %J Genetics Research International %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/392903 %X Histone modifications are widely recognized for their fundamental importance in regulating gene expression in embryonic development in a wide range of eukaryotes, but they have received relatively little attention in the development of marine invertebrates. We surveyed histone modifications throughout the development of a marine annelid, Polydora cornuta, to determine if modifications could be detected immunohistochemically and if there were characteristic changes in modifications throughout ontogeny (surveyed at representative stages from oocyte to adult). We found a common time of onset for three histone modifications in early cleavage (H3K14ac, H3K9me, and H3K4me2), some differences in the distribution of modifications among germ layers, differences in epifluorescence intensity in specific cell lineages suggesting that hyperacetylation (H3K14ac) and hypermethylation (H3K9me) occur during differentiation, and an overall decrease in the distribution of modifications from larvae to adults. Although preliminary, these results suggest that histone modifications are involved in activating early development and differentiation in a marine invertebrate. 1. Introduction One of the central questions in biology is how differences in gene expression during development lead to the generation of form. Epigenetic mechanisms such as histone modifications activate or silence gene expression and thereby provide rapid, reversible mechanisms that regulate gene expression in embryonic development. The importance of histone modifications in development has been extensively studied in model systems. As this approach is gradually extended to nonmodel species, histone modifications are being discovered as mechanisms that are highly conserved in a wide variety of eukaryotes and critically important in regulating fundamental developmental processes, including meiosis [1], cell differentiation [2], organ development in plants [3], sexual and asexual reproduction in fungi [4], genomic imprinting in plants and insects [5], and X-inactivation in mammals [6]. Despite the clearly established importance of histone modifications in the development of many eukaryotes, they have received almost no attention in the development of benthic marine invertebrates. Benthic marine invertebrates represent an exciting group for epigenetic research as they not only are morphologically diverse as adults, but their larvae are morphologically and behaviorally distinct from adults and form the basis for an impressive diversity of life-history patterns. Our objectives are to determine if histone %U http://www.hindawi.com/journals/gri/2012/392903/