%0 Journal Article %T 小波神经网络模型的改进及其应用 %J 系统工程理论与实践 %P 168-173 %D 2009 %X ?将优化函数的连续型蚁群算法与小波神经网络耦合,用蚁群算法优化神经网络的权值和小波参数,找到蚁群算法中信息素更新的最佳衡量标准,且建立了基于蚁群优化的小波神经网络模型,旨在准确预测水稻需水量,为制定合理的灌溉制度、提高水利用率提供科学依据.通过对三江平原富锦市1985至2001年的井灌水稻区全生育期需水量预测检验,确定网络结构为6-12-1,训练最大次数20次时网络收敛,误差精度达到0.0024.研究结果表明,该模型不但计算简便,而且具有较强的逼近能力、较快的收敛速度和较好的预报精度,并且为网络模型的参数优化提供一种新方法,也为预测、预报的研究拓宽新思路. %K 小波神经网络 %K 蚁群算法 %K 需水量 %K 参数优化 %U http://www.sysengi.com/CN/abstract/abstract105837.shtml