%0 Journal Article %T Computational Fluid Dynamics Modeling of Steam Condensation on Nuclear Containment Wall Surfaces Based on Semiempirical Generalized Correlations %A Pavan K. Sharma %A B. Gera %A R. K. Singh %A K. K. Vaze %J Science and Technology of Nuclear Installations %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/106759 %X In water-cooled nuclear power reactors, significant quantities of steam and hydrogen could be produced within the primary containment following the postulated design basis accidents (DBA) or beyond design basis accidents (BDBA). For accurate calculation of the temperature/pressure rise and hydrogen transport calculation in nuclear reactor containment due to such scenarios, wall condensation heat transfer coefficient (HTC) is used. In the present work, the adaptation of a commercial CFD code with the implementation of models for steam condensation on wall surfaces in presence of noncondensable gases is explained. Steam condensation has been modeled using the empirical average HTC, which was originally developed to be used for ˇ°lumped-parameterˇ± (volume-averaged) modeling of steam condensation in the presence of noncondensable gases. The present paper suggests a generalized HTC based on curve fitting of most of the reported semiempirical condensation models, which are valid for specific wall conditions. The present methodology has been validated against limited reported experimental data from the COPAIN experimental facility. This is the first step towards the CFD-based generalized analysis procedure for condensation modeling applicable for containment wall surfaces that is being evolved further for specific wall surfaces within the multicompartment containment atmosphere. 1. Introduction Steam condensation in the presence of noncondensable gases is a relevant phenomenon in many industrial applications, including nuclear reactors. Condensation on the containment structures during an accident and associated computations are important for the containment design of all the existing reactors for LOCA DBA, DBA, and BDBA hydrogen distribution and recombination and passive emergency systems in the nuclear reactors of new generation. Rate of steam condensation at containment walls affects the transient pressure in the containment after loss of coolant accident. Apart from this during a severe accident in a water-cooled power reactor nuclear power plant (NPP), large amounts of hydrogen would presumably be generated due to core degradation and released into the containment. The integrity of the containment could be threatened due to hydrogen combustion. If composition of the hydrogen-steam-air mixture lies within a certain limits, the combustion will occur. The steam condensation phenomenon is important from hydrogen distribution point of view to locate the flammable region in the containment for adequate accident management procedures (Royl et al., 2000 [1]). %U http://www.hindawi.com/journals/stni/2012/106759/