%0 Journal Article %T 一种DHMM的混合训练方法 %A 茅晓泉 %A 胡光锐 %A 唐斌 %J 电子学报 %P 148-150 %D 2002 %X 隐马尔柯夫模型(HMM)作为描述语音信号的一个工具,按输出概率分布的不同,可分为连续HMM(CHMM)和离散HMM(DHMM).经典的训练方法Baum-Welch算法虽然收敛迅速,但是这类基于爬山的算法只能取得局部最优解,从而影响了系统的识别率.对于CHMM,借助于分类K平均方法可以取得可靠的初始点以保证迅速准确的收敛.而对于DHMM,该方法收益不大,最终所得的仍是局部最优解.由于进化计算一个最重要的特点便是全局搜索,这样可得全局最优解或次优解.本文将进化计算应用到DHMM的训练中,提出了一个把传统算法和进化计算相结合的混合算法.实验结果表明该方法既保证了全局搜索又实现了快速收敛,最终所得的模型优于传统方法和简单进化计算方法. %K 隐马尔柯夫模型 %K 进化计算 %K 语音识别 %U http://www.ejournal.org.cn/CN/abstract/abstract5910.shtml