%0 Journal Article %T Dynamic Analysis of a Pyroprocessing Coupled SFR Fuel Recycling %A Fanxing Gao %A Won Il Ko %J Science and Technology of Nuclear Installations %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/390758 %X Numerous studies have attempted to solve the problems constraining the sustainable utilization of nuclear power, for example, the already accumulated HLWs, the worsening environment due to greenhouse emissions, the questionable reliability of natural uranium resources, and the argument over nuclear safety, which are certainly top issues to be addressed. A well-organized nuclear fuel cycle system is the basis for nuclear power sustainability. Therefore, which type of reactor to be employed and whether or not to adopt a reprocessing technique for spent fuel are two key issues to be addressed. A Sodium Fast Reactor (SFR), a Generation IV reactor, has gained considerable attention worldwide. SFR recycling coupled to pyroprocessing, a so-called Pyro-SFR Recycling, shows promising advantages, and therefore, this paper focuses on exploring a strategy of how to realize it, which can offer informative procedures for a better use of nuclear power. A dynamic model has been developed to quantitatively analyze a country-specific case employing two scenarios, a once-through and Pyro-SFR, for a comprehensive comparison, especially focusing on the uranium utilization, the HLW reduction, and the electricity generation cost. 1. Introduction There are generally two methods used to perform a nuclear fuel cycle system analysis, namely, an equilibrium model and a dynamic model. An equilibrium (or steady-state) model focuses on a batch study built with certain assumptions: the referred reactors and fuel cycle facilities already exist and are in perfect operation regardless of the technological, political, and economic constraints on the reactor and back-end process implementation; the derived nuclear fuel cycles are well balanced and organized by different types of reactors with ideal ratios, and the associated infrastructures are already built. However, inevitably these simplified and ideal-condition assumptions appear optimistic in that they omit several important preconditions, including technological maturity, the time needed to reach equilibrium states, social and political concerns constraining the deployment of fuel-cycle technologies, and the economic competitiveness of the different fuel cycles considered [1¨C5]. It should be noted that the technology readiness level of each potential option is quite different, for example, the once-through cycling (OT) is currently available, but the components in the sodium fast-reactor-involved recycling require several decades to be fully applicable [1, 2, 6]. When to start building a certain component of the optimal option can be %U http://www.hindawi.com/journals/stni/2012/390758/