%0 Journal Article %T 基于边界和距离的离群点检测 %A 江峰 %A 眭跃飞 %A 曹存根 %J 电子学报 %P 700-705 %D 2010 %X 近年来,离群点检测已经引起人们的广泛关注.离群点检测在网络入侵检测、信用卡欺诈、电子商务犯罪、医疗诊断以及反恐等诸多领域都具有十分重要的作用.离群点检测的目的是为了发现数据集中的一小部分对象,与数据集中其余的大部分对象相比,这一小部分对象有着特殊的行为或者具有反常的属性.针对现有的离群点检测方法不能有效处理不确定与不完整数据的问题,本文将粗糙集中边界的概念与Knorr等所提出的基于距离的离群点检测方法结合在一起,在粗糙集的框架中提出一种新的离群点定义与检测方法.针对于该方法,我们设计出相应的离群点检测算法BDOD,并且通过在临床诊断数据集上所进行的实验,验证了算法BDOD的有效性.实验结果表明本文的方法为处理离群点检测中的不确定与不完整数据问题提供了一条新的途径. %K 数据挖掘 %K 离群点检测 %K 粗糙集 %K 不确定与不完整数据 %U http://www.ejournal.org.cn/CN/abstract/abstract341.shtml