%0 Journal Article %T MieLab: A Software Tool to Perform Calculations on the Scattering of Electromagnetic Waves by Multilayered Spheres %A Ovidio Pe£¿a-Rodr¨ªguez %A Pedro Pablo Gonz¨¢lez P¨¦rez %A Umapada Pal %J International Journal of Spectroscopy %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/583743 %X In this paper, we present MieLab, a free computational package for simulating the scattering of electromagnetic radiation by multilayered spheres or an ensemble of particles with normal size distribution. It has been designed as a virtual laboratory, including a friendly graphical user interface (GUI), an optimization algorithm (to fit the simulations to experimental results) and scripting capabilities. The paper is structured in five different sections: the introduction is a perspective on the importance of the software for the study of scattering of light scattering. In the second section, various approaches used for modeling the scattering of electromagnetic radiation by small particles are discussed. The third and fourth sections are devoted to provide an overview of MieLab and to describe the main features of its architectural model and functional behavior, respectively. Finally, several examples are provided to illustrate the main characteristics of the software. 1. Introduction The scattering and absorption of electromagnetic (EM) radiation by small particles are important issues for a surprisingly large number of disciplines: solid-state physics, electrical engineering, meteorology, chemistry, biophysics, astronomy, and medicine are just a few of them [1, 2]. The optical properties of such small particles are closely related to their physical and geometrical parameters such as composition, size, shape, and embedding medium [3]. Hence, a quantitative knowledge of the EM scattering as a function of the particle parameters is required if we want to understand the optical phenomena occurring in them, as well as for developing remote sensing and laboratory techniques for particle characterization. However, obtaining such quantitative knowledge is not an easy task in many cases. Fortunately, in spite of the enormous amount of particle shapes and configurations which can be found in nature or in laboratory synthesis processes, it is often sufficient to study simpler systems not only for understanding the elementary phenomena occurring in them but also for practical applications. An excellent example of such kind of particle, which is both simple and of great interest for many applications, is the multilayered sphere (Figure 1). In the field of atmospheric science, light absorption by aerosols has a heating effect in the atmosphere, which is of great interest to study several climatic effects. Their optical properties can be successfully modeled using a core-shell type particle [4, 5]. Moreover, in the field of nanotechnology, applications of %U http://www.hindawi.com/journals/ijs/2011/583743/