%0 Journal Article %T 单位根处的某些单Uq(gln)}-模的Krull--Schmidt分解 %J 华东师范大学学报(自然科学版) %P 1-13 %D 2013 %X 设~$\mathscr{F}$~是特征~0~的域,$q\in\mathscrF$~是个单位根.以~$\mathscr{F}$~为基域、以~$q$~为量子参数,令~$\mathsf{s}_q(n)$~为秩~$n$~的限制量子对称代数,$\Wedge_q(n)$~为秩~$n$~的量子外代数.据~[6],$\mathsf{s}_q(n)$~与~$\Wedge_q(n)$~的齐次分量都是单的~$U_q(\mathfrak{gl}_n)$-模.本文将把~$\mathsf{s}_q(n)$~的齐次分量与~$\Wedge_q(n)$~的齐次分量的张量积分解成不可分解模的直和. %K 量子群 %K 限制量子对称代数 %K 量子外代数 %K Krull--Schmidt\ %K 分解 %U http://xblk.ecnu.edu.cn/CN/abstract/abstract24911.shtml