%0 Journal Article %T 对称正交矩阵反问题及其最佳逼近 %A 孟纯军 %A 胡锡炎 %J 计算数学 %P 269-280 %D 2006 %X 本文主要讨论下面两个问题:问题Ⅰ:给定矩阵X,B∈R~(m×n),求对称正交矩阵A∈SOR~(m×m),使得AX=B.问题Ⅱ:给定矩阵(?)∈R~(m×m),求矩阵A~*∈S_E使得(?)这里S_E问题Ⅰ的解集合,‖·‖指Frobenius范数.本文首先讨论具有k阶对称主子阵的n(n>k)阶正交矩阵的C-S分解,利用这个结果,得到了问题Ⅰ有解的充要条件和通解的一般形式.然后,对给定矩阵(?)∈R~(m×m),讨论了矩阵(?)在问题Ⅰ的解集合S_E中的最佳逼近,得到了最佳逼近解的表达式. %U http://www.computmath.com/Jwk_jssx/CN/abstract/abstract2058.shtml