%0 Journal Article %T 实对称矩阵的两类逆特征值问题 %A 孙继广 %J 计算数学 %P 282-290 %D 1988 %X §gi.两类逆特征值问题先说明一些记号.R~(m×n)是所有m×n实矩阵的全体,R~n=R~(n×1),R=R~1;SR~(n×n)是所有n×n实对称矩阵的全体;OR~(n×n)是所有n×n实正交矩阵的全体;I~((n))是n阶单位矩阵;A~T是矩阵A的转置;A>0表示A是正定的实对称矩阵.?(A)是矩阵A的列空间;A~+是矩阵A的Moore-Penrose广义逆;P_A=AA~+表示到?(A)的正交投影.λ(A)是A的特征值的全体;λ(K,M)是广义特征值问题K_x=λM_x的特征值的 %U http://www.computmath.com/Jwk_jssx/CN/abstract/abstract1176.shtml