%0 Journal Article %T 一类高阶周期微分方程的解和小函数的关系 %A 王青 %A 陈宗煊 %J 华南师范大学学报(自然科学版) %P 16-21 %D 2013 %X 研究了微分方程~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=0$和~$f^{(k)}+[P_{k-1}(\mathrm{e}^{z})+Q_{k-1}(\mathrm{e}^{-z})]f^{(k-1)}+\cdots+[P_{0}(\mathrm{e}^{z})+Q_{0}(\mathrm{e}^{-z})]f=R_{1}(\mathrm{e}^{z})+R_{2}(\mathrm{e}^{-z})$~的解以及它们的一阶导数与小函数的关系,其中~$P_{j}(z)$~,~$Q_{j}(z)$~$(j=0,1,2,\cdots,k-1)$~和~$R_{i}(z)(i=1,2)$~是关于~z~的多项式. %U http://journal.scnu.edu.cn:8080/jwk_xbzrb/CN/abstract/abstract3150.shtml