%0 Journal Article %T 一种电气设备状态诊断方法 %A 马刚 %A 吴克河 %A 李艺 %J 南京师范大学学报(工程技术版) %D 2014 %X 随着电网技术的不断发展和电网规模不断扩大,电气设备数量激增、智能化程度越来越高;同时,终端用户对用电可靠性越来越重视,借助智能技术基于设备运行数据对设备进行故障诊断势在必行.本文以基于范例推理的理论(CRB)与支持向量机技术(SVM)为主要工具,提出了一种基于范例推理的电气设备状态智能诊断模型,试图通过电气设备已有数据的挖掘,获取电气设备故障的潜在发生规律,进而作为依据及时发现并排除电气设备的潜伏性故障.首先研究CRB和SVM在电气设备状态诊断中的应用;然后建立电气设备状态智能诊断模型,以电气设备的海量运行数据、历史数据、测试数据以及环境因素等为基础,建立电气设备的状态范例库,应用SVM回归对设备状态范例库进行深度的挖掘与分析,建立设备状态指纹,并以此为据进行电气设备运行状态的诊断分析;最后以油浸式变压器状态诊断为例,对实际数据进行分析诊断,并与三比值法的诊断结果进行比较.诊断结果表明,智能诊断模型诊断范围更广,诊断结果更准确. %K 电气设备状态诊断 %K 范例推理 %K SVM回归分析 %K 核函数 %K 状态指纹 %U http://njsfdxgckj.paperonce.org/oa/DArticle.aspx?type=view&id=201403002