%0 Journal Article %T 选矿过程精矿品位自适应在线支持向量预测方法 %A 刘长鑫 %A 丁进良 %A 姜波 %A 柴天佑 %J 控制理论与应用 %D 2014 %R 10.7641/CTA.2014.30491 %X 本文提出了一种基于支持向量回归的选矿过程精矿品位自适应在线预测方法,通过使用新的混合核函数和参数在线更新机制提高了精矿品位的预测精度.在分析经典核函数特性后,构造了一种混合核函数以兼顾模型的学习能力与泛化能力,同时为了提高预测方法对选矿生产动态过程的适应性,模型依据新工况样本对现有样本集统计特性的影响,引入了模型参数自适应调整机制,并采用在线迭代学习机制更新模型,提高了模型的计算速度.使用某选矿厂生产实际数据进行实验分析,结果表明本文方法比现有方法在计算时间和预测精度上都有明显优势,适合应用于动态变化的选矿生产过程. %K 自适应参数 %K 在线预测 %K 混合核函数 %K 支持向量机 %K 精矿品位 %U http://jcta.alljournals.ac.cn/cta_cn/ch/reader/view_abstract.aspx?file_no=CCTA130491&flag=1