%0 Journal Article %T 基于粒子群优化支持向量机的煤层底板突水量等级预测 %A 高卫东 %A 王正帅 %J 煤田地质与勘探 %D 2012 %X 为更好地解决支持向量机(SVM)核参数和惩罚因子的取值对煤层底板突水量等级预测精度的影响问题,提出利用全局搜索能力较强的粒子群优化(PSO)算法优化支持向量机参数。选取含水层水压、隔水层厚度、岩溶发育程度、断层规模等作为影响煤层底板突水量等级的因素,利用华北聚煤区煤层底板突水的实测数据进行训练,建立了煤层底板突水量等级预测的粒子群-支持向量机(PSO-SVM)模型,并将其应用于其他样本的预测。应用表明模型能够较好地解决煤层底板突水量等级预测中存在的小样本、非线性等问题,预测结果与实际情况吻合程度高,具有较强的实用性和有效性。 %K 支持向量机 %K 粒子群优化 %K 煤层底板 %K 突水量等级 %K 预测 %U http://mtdz.jourserv.com/front/PaperInfo.aspx?PaperID=9134