%0 Journal Article %T 概率神经网络在地震岩性反演中的应用 %A 彭刘亚 %A 崔若飞 %A 张亚兵 %J 煤田地质与勘探 %D 2012 %X 卧龙湖煤矿北二采区岩浆岩侵入8煤层的现象较为严重,同时该区煤层中构造煤比较发育,瓦斯富集问题较为突出。利用三维地震资料、测井曲线进行约束反演得到的波阻抗作为外部属性,并使用step-wise属性选择法确定合适数目的地震属性,利用概率神经网络技术(PNN)对该区进行孔隙度预测反演。孔隙度反演结果与波阻抗反演结果的对比表明孔隙度较波阻抗对于识别瓦斯富集带具有更高的分辨能力;概率神经网络具有高稳定性、计算精度高等特点,可作为研究构造煤发育和瓦斯赋存的有效手段 %K 概率神经网络 %K 岩性反演 %K 孔隙度 %K 波阻抗 %U http://mtdz.jourserv.com/front/PaperInfo.aspx?PaperID=9091